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Abstract

We present a finitary, semantics-locked learning and evaluation pipeline
for multiclass EMNIST digit classification in which training, evaluation,
and optimization steps admit explicit, checkable invariants. A deterministic
preprocessing lock fixes a partial function from bitmaps to feature facts and a
stable tie-broken prediction rule. Training is performed by an integer-valued
margin-repair procedure that refutes violated margin obligations on an ex-
plicit finite witness table and propagates each update through a postings
index to maintain a cached score matrix. When no witnesses remain, the sys-
tem reaches a certified fixed point: the cached scores agree with definitional
evaluation and all finite-table margin constraints are satisfied. The resulting
perceptron-style classifier is re-expressed in a restricted logical intermediate
representation with definitional interpreter semantics. A compiler emits
specialized residual evaluators for recognized fragments, and speedups are
reported only after a decidable finite equivalence gate verifies agreement of
full score vectors between the compiled evaluator and the reference inter-
preter on a locked test family. The artifact is fully reproducible and includes
configuration and weight hashes binding the certificate to the experimental
context.

Subject: Logic, Proof Theory, Type Theory, Machine Learning
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Figure 1. Illustration. Left: a combinatoric substrate, i.e. an SK-combinator TROMP
DiaGrAM, cf. Grygiel and Lescanne [2015]; in which finite programs denote partial
computable functions under standard evaluation. Right: a topological substrate for
neural evaluation, cf. Scott [1972], where each finite parameter tensor fixes an executable
evaluator on a particular machine-and-runtime semantics.

Exposition. A persistent source of opacity in contemporary learning systems
is not an exotic defect of particular architectures, but a familiar consequence
of effectivity and program semantics. Once training yields a determinate


https://orcid.org/0009-0003-1363-7158

INPUT-OUTPUT behavior (relative to a fixed execution semantics), that
behavior is (extensionally) representable as the denotation of a program; and
many “interpretability” questions thereby become questions about semantic
properties of program denotations.

2 PROJECT OVERVIEW

2.1 CONTRIBUTIONS

Exposition. This paper presents a finitary, semantics-locked learning and
evaluation artifact for EMNIST digit classification, together with a decid-
able specialization (equivalence) gate for residual evaluators. The main
contributions are:

(i) Reproducible artifact. The implementation produces stable configu-
ration and weight hashes binding the certificate, evaluator behavior,
and reported measurements to a concrete preprocessing lock, dataset
identity, and parameter regime.

(ii) Finitary learning and evaluation as a predicative artifact. Working over
a fixed semantics lock and an explicit finite witness table, we develop
a learning-and-audit pipeline whose core predicates (well-formedness,
cache correctness, margin satisfaction, and evaluator equivalence on a
fixed gate) are total and decidable. Concretely:

(a)

Semantics lock. We fix a deterministic preprocessing and feature-
extraction regime (canonicalization, binarization threshold, fea-
ture schema, and a stable tie-broken arg max*) that induces de-
terminate maps from EMNIST bitmaps to finite fact lists and
from score vectors to predictions.

Typed margin repair on a finite witness table. We define an
integer-valued repair procedure that enumerates violated one-vs-
rest margin obligations on an explicit finite table and applies
local updates determined by a stable best-competitor selector.
Updates are propagated through postings indices to maintain a
cached score matrix.

Invariant preservation and certification. We prove that each repair
step preserves a well-formedness judgment consisting of postings
correctness and cache correctness (agreement with definitional
scores). This yields a decidable finite certificate predicate: cache
correctness plus satisfaction of all margin obligations on the table.

A-definable evaluation. For fixed bounds (finite table, fixed
schema, and bounded vocabularies), the locked feature extraction,
definitional scoring, repair functional, and certificate predicate
are \-definable under standard encodings of finite lists, bounded
vectors, and integers.

Verified specialization gate. We re-express the learned classifier
in a restricted logic-style intermediate representation with defini-
tional interpreter semantics. A recognizer/compiler emits residual
evaluators for recognized fragments, and speedups are reported
only after a decidable finite equivalence gate verifies equality of



full score vectors between the compiled evaluator and the reference
interpreter on a fixed, semantics-locked test family.

Definition 2.1 (Effectivity). Throughout, the learned artifact is understood
as the implemented evaluator on a physical machine. Parameters are stored
as finite bitstrings (e.g. integers or floating-point words) and evaluation
proceeds by the machine’s effective transition dynamics. Hence the realized
input—output behavior induces a partial computable function on the chosen
concrete encodings.

Ansatz 2.2 (Realizability). The reduction from learned artifacts to program
semantics may be stated in the BROUWER-HEYTING-KOLMOGOROV and
Kleene tradition; cf. Troelstra and van Dalen [1988]. Any concrete learning
system is realized by a physical machine; a machine implements effective
procedures; effective procedures are representable in a formal calculus; and
formal calculi admit mathematical interpretations. This yields the chain of
partial encodings:

Realization of MACHINE LEARNING =¢ne Symbolic Machine Code
<enc Neural Network Model <¢ne Second-Order Arithmetic (2.1)
=enc Computer Algebra =, Effective Logic.

However, second order arithmetic is not a computational necessity. The
“machine” already realizes the effective content; the appeal to external
mathematical semantics functions primarily as an explanatory bridge. In
this sense—as an analogy rather than a literal sequent-calculus theorem—one
may regard the external detour as a cut in the manner of Gentzen [1935]:
it can be eliminated without loss of operational content, yielding a direct
reduction to a universal syntactic model. Concretely, there exists a shorter
route, e.g. in the sense of Solomonoff [1964a,b],

Realization of MACHINE LEARNING =g, Symbolic Machine Code

=enc Combinatory Logic <¢nc Effective Logic. (22)

The claim is not that a trained network is a combinator term, but
that there exists an extensional extraction into a universal formalism (e.g.
A-calculus or SK-combinators) such that, under standard encodings, the
extracted term computes a partial function extensionally equal to the learned
evaluator’s realized input—output behavior.

This extraction claim is intentionally modest: it is an existence statement
about representability in a universal calculus. Any stronger claim (e.g.
that extraction is uniformly small, human-legible, or tractable) requires
additional structural restrictions; the NOTEBOOK’s restricted intermediate
representation (IR) regime (Section 3.4) is where such operational extraction
and audit become feasible.

Moreover, insofar as learning consists in escaping the maximally entropic
baseline predictor by exploiting compressible regularities, it typically admits
many extensionally equivalent realizations with sharply different computa-
tional profiles. This phenomenon is representation-theoretic rather than
accidental: in our earlier work, as in Fibonacci-based codings and ®-adic
recursion, semantic operations become local and bounded by relocating struc-
ture into sparse additive supports [Rosko, 2025a,b], the same denotation
may admit realizations whose verification, explanation, or execution costs
differ by orders of magnitude. At the universal boundary this multiplicity is



not, in general, well-founded: for a fixed BLUM COMPLEXITY measure, there
exist computable functions for which no asymptotically optimal extensional
realization exists, in the sense of a GODEL-BLUM SPEEDUP defined bellow.

Lemma 2.3 (Godel-Blum Speedup). By Godel [1986]; Blum [1967], for
any BLUM COMPLEXITY measure C there exist total computable functions f
with no C-optimal implementation.

Concretely, for any C and any program p computing f, there exists a
program ¢ computing the same f such that

C(q,x) < C(p,z) for all but finitely many x. (2.3)

2.2 RELEGATION

Exposition. We relegate implementation details to the accompanying NOTE-
BOOK, using PROJECT JUPYTER [Granger and Pérez, 2021], PYTHON 3
(3.13.7) [Van Rossum and Drake, 2011], and GITHUB [Dabbish et al., 2012].
Experiments are conducted on EMNIST [Cohen et al., 2017].

GitHub repository: github.com/Milan-Rosko/typedlearn;
GitHub policy: docs.github.com/en/site-policy;
On EMNIST: biometrics.nist.gov/cs_links/EMNIST /Readme.txt.

2.3 SIMPLE RUNDOWN

Ansatz 2.4. In our realization a learned classifier is treated as an auditable
family of evaluators, together with semantics-preserving speedups obtained
by verified specialization.

We fix a deterministic canonicalization of EMNIST bitmaps, binarization
threshold, a feature schema mapping each image to a finite set of ground
facts feat(F') (active pixel indices), and a stable, tie-broken argmax rule
(Lemma 3.2). This SEMANTICS LOCK induces determinate maps from raw
inputs to feature facts and from score vectors to predictions, and is recorded
by ate es for reproducibility.

First, a simple multiclass perceptron is trained. Each class score is the
sum of weights associated with the active feature facts. The learned weights
are saved together with dataset and schema fingerprints (SHA), pinning the
realized function to a specific preprocessing and data regime.

The learned model is then re-expressed as an instance of a restricted
intermediate representation (IR) family. A generic logic-style interpreter
(unification and rule firing) provides definitional semantics for this IR. On
top of it, a recognizer/compiler emits a specialized residual evaluator for rec-
ognized families (unary vote and a join-bearing VOTE2 variant), eliminating
interpretive overhead while preserving both the computed score vector and
the resulting prediction.

All performance reporting is conditioned on deterministic equivalence
checks: before any timing is reported, the compiled evaluator must match
the interpreter on (i) predictions and (ii) full score vectors over a fixed
semantics-locked finite sample (Definition 3.8). The realization is then a
median of per-example runtimes, it reports speedup factors, and checks
compilation amortization. The methodological claim is that, once learning


https://github.com/Milan-Rosko/typedlearn.git
https://docs.github.com/en/site-policy/
https://biometrics.nist.gov/cs_links/EMNIST/Readme.txt

yields determinate, program-representable behavior, verified compilation can
change how the behavior is computed without changing what is computed.

The interpretive point is that the cost driver is the worst-case inference
pattern. In the general IR, join-bearing rule firing is an analogue of a locally
simple but globally expensive proof step: it is syntactically shallow yet can
force adversarial search. By contrast, the unary-vote fragment behaves like
bounded axiom checking. Specialization targets this worst case by collapsing
generic join search into direct residual computation; the equivalence gate
ensures that the optimization is purely intensional.

In summary:

(i) A semantics-locked EMNIST artifact that re-expresses a learned clas-
sifier as an auditable evaluator definable in a universal formalism
(e.g. A-calculus), together with deterministic verification of a compiled
evaluator against a reference interpreter on an explicit finite gate.

(ii) A measured “speedup-by-compilation” account for two IR families
(unary vote; join-bearing VOTE2), separating what is computed from
how it is computed.

(iii) Synthesis: once learning yields program-representable behavior, uni-
versal interpretability requests about nontrivial extensional semantic
properties inherit classical undecidability barriers, while the practical
bottleneck in restricted interpreters is governed by worst-case inference
(joins) even when typical instances are benign.

2.4 RESULT

Our NOTEBOOK run produces a single finitary training-and-audit artifact for
EMNIST digits. The pipeline is discrete and explicit: images are streamed
from IDX-gz, canonicalized, binarized by a fixed threshold, mapped to unary
facts, and then subjected to a compiled discrete margin-repair loop that out-
puts an integer weight table together with an incrementally maintained score
cache. The reported results therefore concern (i) the locked experimental
context and (ii) the exact finite verification outcome by thresholding pixels
at bin_ threshold= 127 with an optional intensity-based cap cap_unary= 128.
The training procedure below is executed on a finite witness table of size
finite_n= 256 drawn from the streamed training set (under quick mode caps),
and audited exactly on that table.
On the finitary fragment

| EMNIST/digits | finite_n=256 |
classes=10 | margin=1 | cap__unary=128 |,

the compiled repair loop of Definition 3.9 produces an integer weight table W
and a cached score matrix S intended to coincide with the definitional sums
(Definition 3.6). The target obligation is the finite-table margin constraint

score(i,y;) > score(i,c) + 1 for all ¢ # y;, (2.4)
with

score(i, C) - Z W[(Ca f)]v (25)

fefacts(i)



and a stable first-maximum tie-break for prediction. The verifier reports
that the learned weights satisfy the margin constraint on the entire finite
witness table, and that the compiled cache is consistent with the definitional
computation:

| Violations: 0/2304 (finite-table) | Cache: OK |.

Here 2304 = 256 - (10 — 1) is the total number of one-vs-rest margin obliga-
tions audited.

For an out-of-table diagnostic, we additionally evaluate on a small
balanced probe drawn deterministically from the streamed test set, with
probe_per_class=10 (100 items total). The best probe accuracy observed in
this run occurs at epoch 6:

| probe_acc=0.710 | w_keys=4573 |.

This probe figure is not itself certified; it is reported only as a lightweight
generalization sanity check under the same SEMANTICS LOCK.
The run emits a hash identifying the certified finite artifact:

| 6abdef3278dcac0ad827615e75374d8c66a81b8366285e4661ae0021ab39d8cc | v0.1.2 |

In summary, our NOTEBOOK yields a finitary, mechanically checkable
result: exact satisfaction of the stated margin obligations on an explicit
finite witness table, together with a verified correctness gate for the compiled
score cache. The balanced probe accuracy is an auxiliary measurement and
should be read separately from the certificate.

3 THEORY

3.1 EXTENSIONALITY

Definition 3.1 (Semantics Lock). Fix a preprocessing map

canon:7Z — 7, (3.6)
a binarization threshold
T€{0,...,255}, (3.7)
a feature schema
®: T — P(F), (3.8)

producing “ground facts”, and a deterministic tie-breaking rule arg max*
(Lemma 3.2). The tuple

L = {canon, bin,, ®, argmax" } (3.9)

is the SEMANTICS LOCK. It induces determinate functions from raw inputs
to feature facts and from score vectors to decisions, relative to the fixed
evaluator semantics under which canon and bin, are executed. We work
throughout relative to this fixed lock £ and a fixed, explicitly listed finite
table

(Xisyi)ien, yi €{0,...,K -1}, (3.10)



which may be regarded as a (predicative) table over N under standard
encodings. We write the locked feature list for X; as

FI[i] = Factsg(X;), (3.11)
where Facts, includes the forced bias fact, hence
|FIi]| > 1 foralli< N. (3.12)

Let F' denote the finite feature universe induced by the schema on this
artifact. For propagation, we fix a postings index

post[f] = {i< N : feFI[i]}. (3.13)

All objects above are finitary and admit standard encodings (finite sequences,
bounded matrices, and finitely supported tables).

Lemma 3.2 (Tie-break). Let K € N and let
s:{0,..., K—1} >R (3.14)
be a score function. Define

argmaxoe o g1y s(C) =
(3.15)
mm{ C ’ VO € {0,..., K —1}: s(C) > s(c')}.

Equivalently, arg max* is implemented by a left-to-right scan which updates
only on strict improvement.

Observation. Write Facts.(X) for the finite, deterministically normalized
list of active feature indices extracted from X € Z under L.

The locked finite artifact supports two complementary ways of presenting
learning and evaluation. Both can be rendered as (possibly partial) func-
tionals on a finitary state space together with a target predicate: TYPED
REPAIR targets a decidable certificate gate on the finite artifact, whereas
gradient methods target minimization of a real-valued empirical risk.

3.2 EVALUATION

Definition 3.3 (Compiled Evaluator). A compiled evaluator is a residual
program Ey emitted by a recognizer/compiler targeting a restricted IR family,
such that for all inputs X,

Ey(X) = Interp(Ry, X), (3.16)

where equality is taken at the level of the full score vector (hence also the
induced prediction under the stable tie-broken arg max*).

Definition 3.4 (Finite Equivalence Gate). Let Rg be an IR artifact with
definitional meaning given by the reference interpreter Interp, and let Ey be
a compiled residual evaluator. Define the finite equivalence gate by

Eqr(Eg,Rg) = VX € T: Eg(X) = Interp(Ro, X), (3.17)

where equality is again taken at the level of the full score vector.



3.3 TYPED REPAIR

Ansatz 3.5. Consider a deliberately incomplete refuter (a finite sieve P),
which runs a diagonal schedule ¢t = k + n to guarantee systematic coverage
of a product search space under explicit caps, and reserves the expensive
verifier, e.g., Miller [1976]; Rabin [1980], for the residue that the cheap
refuter cannot dismiss. The procedure is therefore intentionally partial: it is
engineered to produce auditable certificates of failure cheaply (divisibility
witnesses) and to invest verification effort only where the sieve cannot decide.

On the finite side, the core constraint family (margin satisfaction on
a fixed witness table under a locked semantics) is decidable and is in fact
checked exactly by the certificate gate; here there is no undecidability, only
explicit bookkeeping and cost control. On the universal side, however,
interpretability demands that quantify over all inputs or all semantically
equivalent realizations push toward nontrivial extensional predicates on
programs, where uniform decision is blocked in the classical way.

In this reading, “undecidability on purpose” means: we exploit the gap
between (i) local, cheaply refutable obligations and (ii) global, non-uniform
semantic demands by replacing the latter with diagonally scheduled search
plus promotion of discovered structure into fast filters (postings indices,
caches, specialized evaluators). The analogy is thus not that learning reduces
to primality, but that in both settings one makes progress by converting a
universal decision posture into an auditable stream of refutations, survivors,
and certificates, controlled by explicit resource bounds and a fixed notion of
semantics, cf. Rosko [2025¢].

Remark. The training loop is “diagonal” in the operational sense that it
proceeds by refuting a finite universal condition: violations of the margin
constraints are X-witnesses, and each step eliminates the earliest witness
under a fixed enumeration while preserving a decidable well-formedness
invariant. On the finite semantics-locked artifact, success is a decidable
II-fact and is certified by exhaustive checking. However, once the learned
evaluator is regarded extensionally as an arbitrary effective procedure in a
universal hypothesis space, many explanatory demands become nontrivial
semantic predicates of program denotations; uniform decision of such II-
shaped claims would constitute a semantic oracle. Hence the methodology
intentionally replaces unattainable universal completion by auditable streams
of local refutations and finite-gate certificates.

Definition 3.6 (State Space and Definitional Score). A repair state is a
pair

X = W,S), (3.18)

where
W {0,.... K -1} x F = Z, (3.19)
S:{0,...,N—-1} x{0,..., K -1} = Z. (3.20)

Here W is a sparse integer weight table (default 0), and S is a cached score
matrix. The definitional score on the finite table is

scoreyy (i,¢) = Z W{(e, f). (3.21)

fEFI[i]



Definition 3.7 (Well-formedness). Define postings well-formedness by

PostOK(FI,post) = Vi< N Vf e F:

3.22
(f € FI[i]) < (i € post[f]). (3.22)
and cache correctness by
CacheOK(FI,W,S) = Vi< NVe< K :
(3.23)

S(i,c) = scorew (i, ¢).

Write
FX:WF = PostOK(FI,post) A CacheOK(FI,W,S). (3.24)

Definition 3.8 (Finite Certificate Gate). Fix v € N. Define a finite margin
predicate (cache-level) by

FULL.okS*™(S) = Vi < NVe#y;: S(i,y;) > S(i,c) + 1, (3.25)
and define the gate
OK,(FI,W,S) = CacheOK(FI,W,S) A FULL.okfyaChe(S). (3.26)

For fixed (F1I,y), the predicate OK, is total and decidable by explicit checks.
Definition 3.9 (Local Repair Step). Fix v € N and an overshoot A € N.
Given ¥ = (W, S) and an index i < N, define the stable best competitor

c*(%,4) = argmax,, S(i,c), (3.27)

Yi

the slack
slack(X2,4) = (S(i,¢*) +v) — S, y:), (3.28)

and ¢ = |FI[i]| (so £ > 1). If slack < 0, define

Repair(X,4,v,A) = X. (3.29)
If slack > 0, set
lack
steps = Fa; —‘ + A, (3.30)

and produce ¥’ = (W', 8") by, for each f € FI[i] and each j € post[f],

W' (y;, f) = W (y;, ) + steps, W'(c*, f) = W(c*, f) — steps,

3.31

S'(4,y:) = S(J,yi) + steps, S'(4,¢*) = S(j,c*) — steps, (3:31)
leaving all other entries unchanged. Define

Repair(%,i,v,A) = ¥, (3.32)

Definition 3.10 (Repair Functional). Fix v € N and an overshoot A € N.
Define the first-refutation index (if it exists) by

*(x) = min{i < N:3e#yi (Stiw) < SGc)+ 7)}. (3.33)



If no such i exists, define Repair, A (3) = X. Otherwise define
Repair, A(X) = Repair(%,i*(X), v, A). (3.34)

Lemma 3.11 (Typedness). Typing is the art of not asking questions when
answers are known to be insufficient. If

FY:WF and X' = Repair(%,i,v,A), (3.35)

then
F > : WF. (3.36)

In particular, cache correctness is preserved:
Vj,c: S'j, c] = scorew (3, c). (3.37)

Proof Sketch. By invariant preservation, since PostOK is unchanged and for
CacheOK, each primitive weight update

Wi, f)] +=0 (3.38)
is paired with exactly the induced cache updates
Slj,c] +=19 (3.39)

for all j such that f € FI[j], equivalently j € post[f] by PostOK. The
linearity of

> Wile f)] (3.40)

fEFI[j]

yields the claim. |

Theorem 3.12 (Learning by Repair). Assume F X : WF and slack(X,7) > 0
at ¢ in Definition 3.9. Let

¥ = Repair(2,4,7, A) (3.41)

with updated weights W’. Then Margin, (W', i) holds. Moreover, for every
competitor ¢ # y;,

scorew (i,y;) > scoreyw(i,¢) +v+ A - |FI[i]|. (3.42)

Proof Sketch. By inequality-chasing. Write ¢ = |FI[i]| (or 1 if empty). Since
¢* is a stable maximizer among competitors and CacheOK holds, for every
¢ # y; we have

S(i,¢) < 8(i, ), (3.43)

hence the slack with respect to any competitor is at most slack(X, ). The
update increases the true-class score at i by steps - £ and decreases the c*
score by steps - £; all other competitor scores are unchanged. Because

steps - £ > slack(X,4) + A - £, (3.44)
the margin constraints are satisfied with the stated overshoot. |

Exposition. Philosophically, we exploit the asymmetry inherent in REFLEC-
TION PRINCIPLES, cf. Feferman [1960], between RE and co-RE sets by stating

10



a global semantic claim up front, then immediately discharging only its fini-
tary, checkable fragment via explicit search for counterexamples. Below, we
look at some of our entities in detail.

Lemma 3.13. If Margin, (W, ) fails in a well-formed state, then (i, c* (W, 1))
is a refutation witness. Applying Repair eliminates that witness while
preserving well-formedness. Thus the training loop is an explicit refutation-
guided search for W satisfying

Vi Margin. (W, 1) (3.45)

on the finite table.

Remark. This development is finitary by design: it depends only on locked
preprocessing, finite witness tables, integer arithmetic, and decidable invari-
ants (WF and the finite-table margin predicate). Smoothness and derivatives
may be invoked externally to explain why analogous dynamics scale or
generalize, but they are not required to state, execute, or audit the update
procedure.

3.4 SPEEDUP THESIS

Definition 3.14 (Finite Certificate Predicate). Given (F1,y, W, S,~), define

FULL.ok = Vi < N Ve#y;: S(i,y:) > S(i,¢) + 7, (3.46)
CACHE.ok = CacheOK(FI,W,5), (3.47)
ok = FULL.ok A CACHE.ok. (3.48)

A certificate binds ok together with stable hashes of configuration, dataset
identity, and weights (stable JSON + SHA256), so that the audited claim is
replayable and checkable.

Lemma 3.15 (Gate Decidability). For fixed K, finite N, and fixed lock
L, the predicate ok is total and decidable. If ok holds, then the cached
evaluator S agrees with definitional semantics on the finite artifact and all
stated margin obligations are satisfied.

Lemma 3.16 (Score Definability). Fix K, a lock £, and finite bounds N
and cap. Under standard encodings of finite lists, bounded vectors, and
integers, the functions computing Facts, on concrete inputs, the definitional
scorer scoreyy, the stable best-competitor selector, the repair step Repair, and
in particular, the finite certificate predicate ok are A-definable and decidable
on the finite artifact.

Thesis 3.17 (Speedup from 3/II Polarity). Two orthogonal speedups are
exposed by the pipeline, each admitting an arithmetic reading, in the sense
of Kleene [1943]:

(i) Ewvaluator speedup. Compilation replaces a generic interpreter by a resid-
ual evaluator while aiming to preserve extensional behavior (Def. 3.3).
Non-equivalence is witnessed by a concrete counterexample input X on
which score vectors differ (a 3-style object). By contrast, extensional
equivalence is a global IT-style claim (universal over inputs) and, at the
universal boundary, is not uniformly decidable. We therefore replace

11



the unattainable global oracle by an auditable gate: equivalence is
required only on an explicit, finite, semantics-locked test family.

(ii) Training speedup. Refutation-guided repair replaces uninformed search
for W by a specialized update that propagates local refutations through
a typed dependency structure (Lemma 3.13). A violated margin
constraint is a X-fact (there exists a witness (i,c)), whereas zero
violations is a IT-condition (for all ¢ and all ¢ # y;, the margin holds).
On the finite witness table this II-condition is decidable and is exactly
what the certificate predicate ok attests.

Lemma 3.18 (Primitive Recursion). We realize the repair trajectory by
primitive recursion:

\20 = (0,0), Sit1 = Repair, A(50). (3.49)

Methodologically: if the iteration reaches a fixed point ¥, = ¥4, cf. Kleene
[1952], then the decidable certificate predicate OK,(FI,W;,S;) can be
checked exactly.

3.5 CROSS-ENTROPY

To present gradient methods in the same “functional + objective” idiom, we
fix feature vectors
v €eRF (i < N), (3.50)

derived from the same locked schema (e.g. bias plus unary indicators), and
let
W e REXF, (3.51)

Define logits and probabilities by
2z(W) = We; e RE, p;(W) = softmax(z;(W)). (3.52)
The per-example loss and empirical risk are
1
GW) = —log(pi(W)y,), LW) = + ;VMW). (3.53)

Fix a learning rate 7 > 0 and a deterministic schedule i; (e.g. i, = ¢t mod N).
One-step STOCHASTIC GRADIENT DESCENT (SGD) is the primitive recursion

Wiz1 = Wy—n (pit(Wt) - eyit) SO;E» (3.54)

where e, is the one-hot basis vector. In “full-batch” form, this is gradient
descent on L:
Wt+1 = Wt — nVL(Wt) (355)

To align prediction with the locked decision semantics elsewhere, define
09;(W) = argmax_x 2z (W), (3.56)

using the same tie-broken arg max* (Lemma 3.2).

Proposition 3.19 (Parallel Condensation). On the fixed semantics-locked
finite artifact, both methods admit a compact presentation as iteration

12



schemes together with their respective targets:

TYPED REPAIR
Et+1 = Repair%A(Et) ~> (Et+1 = Et) = OK,Y(FI7Wt,St),

STOCHASTIC GRADIENT DESCENT
Wigr = Wi =1 (pi,(Wy) — ey, )]~ minimization of L(W).

(3.57)

In particular, TYPED REPAIR is engineered so that success on the finite
artifact is a decidable, mechanically checkable certificate predicate, whereas
gradient descent is naturally specified by its recurrence together with a
real-valued objective and typically requires additional analytic assumptions
to obtain convergence guarantees.

4 REALIZATION

4.1 SEMANTICS

Realization 4.1 (Argumentum Maximi). The stable arg max (Lemma 3.2)
ensures predictions are total and deterministic; in ties it returns the least
class index among maxima.

Algorithm

Input: score vector scores[0..K — 1] € R¥ with fixed K.
Output: arg max” (least index among maxima).

1: procedure STABLEARGMAXSTAR(scores)
2 best 0

3 bestv < scores|0]

4 for C <~ 1to K —1do

5: if scores[C] > bestv then

6: best < C

7 bestv <— scores[C]

8 end if

9 end for

10: return best

11: end procedure

Realization 4.2 (Unary Vote). We realize semantics by generic proof steps
(unification on atoms and rule firing). The implementation is intentionally
overhead-heavy but auditable.

Algorithm

Input: weights 6 : {0,..., K —1} x {0,...,783} — Z (default 0), image X.
Output: (g, scores).

1: procedure UNARYSPEC(0, X)

2 L + Factsz(X)

3 for C < 0to K —1do

4 scores[C] < 0

5 end for
6 for all F € L do
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7: for C+ 0to K —1do

8: scores[C] < scores[C] + 6(C, F)
9: end for
10: end for
11: 9 < STABLEARGMAXSTAR(scores)
12: return (g, scores)

13: end procedure

Definition 4.3 (Vocabulary). Fix a finite offset vocabulary R and a deter-
ministic boundary convention inducing a total operation

Fore{0,...,783} for F € {0,...,783}, r € R. (4.58)

Let
rel_id: R—{0,...,|R| —1} (4.59)

be the index map. Define
Active(G, L) (4.60)

as membership of G in the list-induced set of L.

Realization 4.4 (Specification). VOTE2 introduces a join pattern over pairs
of active features. A fixed relation vocabulary R (grid offsets) mediates
the join; the compiler specializes the join into an offset scan, reducing the
baseline quadratic join cost.

Algorithm

Input: weights 8 : {0,..., K — 1} x {0,...,|R| — 1} — Z (default 0), image
X, fixed R.

Output: (7, scores?).

1: procedure VoTETWoSPEC(0®, X, R)
2 L + Factsz(X)

3 for C<0to K —1do

4 scores[C] + 0

5: end for

6 for all FF € L do

7 for all r € R do

8

9

G+ Far
: if ACTIVE(G, L) then
10: rid < rel_id(r)
11: for C <~ 0to K —1do
12: scores? [C] <+ scores™? [C] + ) (C, rid)
13: end for
14: end if
15: end for
16: end for
17§ + STABLEARGMAXSTAR(scores®)) return (,scores?)

18: end procedure

Lemma 4.5 (A-definability). For fixed K and fixed finite R, the procedures
STABLEARGMAXSTAR, UNARYSPEC, and VOTETWOSPEC are A-definable
under standard encodings of bounded vectors and finite lists. If Facts, is
effective (as it is for concrete preprocessing and feature extraction), then the

14



full locked mapping
X — (g, scores) (4.61)

is representable as a closed term in a universal formalism (e.g. A-calculus or
SK).

4.2 MAIN FIXED POINT ALGORITHM

Realization 4.6 (Finite Witness Table). The diagonalization phase operates
on a finite, auditable training table built from the streamed dataset. It
extracts witness facts per example and compiles a postings index for fast
propagation of local weight repairs into cached scores.

Specification

Inputs: training stream Dyrqin, parameters (N, 7, cap), and facts function Facts.
induced by the SEMANTICS LOCK L.
Output: finite table (X;,v:)X;, witness lists FI[i] = Factsg(X;), postings
post[f] = {¢: f € FI[i]}, and cached score matrix S|, c] initialized to 0.

1: procedure BUILDFINITETABLE(D;rqin, NN, cap, £)

2: (X1,y1),-.., (Xn,yn) « first N items from Dirain

3: for i < 1 to N do

4: F1I[i] « Facts(X;) > locked canonicalize, binarize, schema
5: if cap # oo then

6: F1I[i] < CapFacTs(FI[i], cap)

> deterministic cap; stable tie by index

7: end if

8: FI[i] + UNIQPRESERVEORDER(FI[i])

o: for all f € FI[i] do
10: append i to post|[f]
11: end for
12: end for
13: for i < 1 to N do
14: forc+0to K —1do
15: Sli,c] <0
16: end for
17: end for

18: return (X1..~,y1..~, F1, post, S)
19: end procedure

Realization 4.7 (Exact Margin Constraint). Diagonalization targets an
explicitly finite constraint family (hence auditable): each training exam-
ple must have a fixed margin over every competing class under the same
deterministic scoring semantics.

Definition

Weights are integer-valued and sparse: W{(c, f)] € Z with default 0. Witness
facts F'I[i] are finite lists of ground facts (e.g. unary pixel facts plus a bias).
Score:

scorew (i,c¢) = Z W{(e, )]

FEFI[d)
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Margin constraints (fixed margin v € N):
Vi€ {1.N}Ve#y;: scorew(i,y;) > scorew(i,c) + 7.
Stable competitor selection:
c*(i) = argmax,,,, scorew (i,c),

where arg max” is the stable (first-maximum) rule of Lemma 3.2.

Realization 4.8 (Typed Repair). Our A-definable procedure provides a
discrete analogue of BACKPROPAGATION, cf. Rumelhart et al. [1986] without
gradients. It treats violated margin constraints as explicit error witnesses,
computes an integer repair magnitude, and propagates the resulting update
along compiled postings indices so that all affected cached scores are updated
in bulk.

Diagonalization

Inputs: finite witnesses (y1..w, FI, post, S), parameters (v, A, E,U) where v is
margin, A is overshoot, £ max epochs, U max updates.
State: sparse integer weights W{(c, f)] (initialized to 0), cached scores S[i, c]
(initialized to 0).
Output: repaired weights W, epoch curve (diagnostics), and verification artifacts.
1: procedure DIAGONALIZEREPAIR(y, F'I, post, S, v, A, E,U)
2 initialize sparse W{(c, f)] + 0
3 updates < 0; curve < []
4 for epoch < 1 to E do
5: viol__before +— COUNTVIOLATIONSFROMCACHE(S, y, )
6 ep_updates < 0
7 for i < 1 to N do
8
9

yi < yli]
: ¢* <~ BESTCOMPETITORSTABLE(S[i, ], ¥;)
10: slack < (S[¢, ¢*] + ) — S[i, 4
11: if slack < 0 then
12: continue
13: end if
14: £ <+ |FI[i]|; ¢ + max(1,¥£)
15: steps < [slack/{] + A
> minimal integer repair + overshoot
16: for all f € FI[i] do > compiled propagation through postings
17: Wiy, f)] <= Wl(yi, f)] + steps
18: W[(C*7 f)] — W[(C*7 f)] — steps
19: for all j € post[f] do
20: S[j, yi] < S[J, y:] + steps
21: S[j, c*] < S[j, ¢*] — steps
22: end for
23: end for
24: ep_updates < ep_updates + 1; updates < updates + 1
25: if updates > U then
26: break
27: end if
28: end for
20: viol__after «+— COUNTVIOLATIONSFROMCACHE(S, y, )
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30: append to curve (epoch, ep_updates, viol_before, viol_after)

31: if updates > U then
32: break

33: end if

34: if viol_after = 0 then
35: break

36: end if

37 end for
38: return (W, S, curve)
39: end procedure

Realization 4.9 (Certificate). All claims made by the diagonalization phase
are conditioned on exact verification on the finite table. A certificate binds
configuration, finite dataset identity, and learned weights to a stable artifact
hash.

Specification

Inputs: (FI,y,W,S), margin v, and stable encodings/hashes.
Output: OK iff (i) all margin constraints hold under the definitional score and
(ii) the cache equals definitional sums; plus a certificate record.

5 DISCUSSION

5.1 RELATED WORK

Exposition. TYPED REPAIR is a perceptron-style, mistake-driven margin
update, cf. Rosenblatt [1958]; Crammer and Singer [2001]; Shalev-Shwartz
and Singer [2005], presented here in a finitary predicative form that targets
a decidable certificate predicate (finite-table margin satisfaction plus cache
correctness) rather than minimization of a surrogate loss Rumelhart et al.
[1986]. The evaluation phase places the learned classifier in a restricted
logic-style IR with definitional interpreter semantics, connecting to logic
programming and Datalog evaluation where joins dominate cost, cf. Ullman
[1988]. Our compiler specializes recognized join-bearing fragments into
residual evaluators, as partial evaluation, cf. Jones et al. [1993], and reports
speedups only after a finite equivalence gate validates score-vector agreement
with the reference interpreter, akin to translation validation, cf. [Necula,
1997; Poetzsch-Heffter and Gawkowski, 2005].

5.2 INTERPRETATION AS A LIMIT

Observation. The results stem from a controlled comparison between two
regimes: In the universal regime, a learned system is treated as program-
representable in a Turing-complete formalism, and explanation demands
thereby become questions about semantic properties of arbitrary programs.
In the restricted regime, the learned object is forced into syntactically
recognizable IR families with a fixed reference semantics, so that explanation
and verification reduce to tractable, witness-producing procedures.
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Many “perfect” explanation demands can be formalized as requiring
a procedure that decides or constructs witnesses for nontrivial semantic
properties of the learned program (e.g. invariances, counterfactual guarantees,
minimal faithful summaries, universal error characterization). Assume a
universal program model and let P be any nontrivial semantic predicate
(true for some programs and false for others).

Thesis 5.1 (Limit of Universal Explanation). Any method that, for arbitrary
learning in a universal hypothesis space, promises perfect decision of a
nontrivial extensional explanatory property (or perfect prediction of all
future behaviors in the strong, uniform sense) cannot be realized as a total
computable function without additional oracle assumptions. Consequently,
“interpretability” is not solely an engineering problem; at the universal
boundary it is constrained by predicate logic.

Ansatz 5.2 (Interpretability by Typedness). Rather than attempting a
universal semantic oracle, the project commits to a restricted hypothesis
space: IR families are syntactically recognizable; semantics are fixed by
a reference interpreter; and compilation targets a tractable fragment in
which equivalence checks, certificate generation, and faithful summaries
are mechanically feasible. The intended notion of explanation is therefore
witness-based: an explanation is a certificate that can be checked against
the reference semantics, typically relative to an explicit finite gate.

Exposition. Within the restricted regime, cost concentrates in closure rather
than in recognition. Local feature checks and axiom matching are uniform
and shallow, but global propagation requires iterating a saturation condition.
In operational terms, closure under rule application is the worst case: it
forces repeated search and dominates the verification/explanation budget
when rules interact densely.

The NOTEBOOK avoids the universal barrier not by refuting it, but by
working in a deliberately restricted regime: IR families are recognizable,
semantics are pinned down, and compilation targets a tractable subset where
equivalence checks and explanations are feasible. This is interpretability-by-
restriction plus verification.

Lemma 5.3. For the unary-vote family, specialization eliminates generic
unification overhead and yields a constant-factor speedup. For the join-
bearing family (VOTE2), specialization replaces a generic join baseline of the
form

O(FI* - |R]) (5.62)
with an offset-scan evaluator of the form
O(|F|-|R]), (5.63)

where |F| is the number of active features and |R| is the size of the fixed
relation vocabulary.

Logic 5.4 (Speedup). The point is not merely performance engineering.
Specialization converts an implicit semantic question,

Does there exist a join witness that activates this
consequence?

into an explicit, checkable enumeration over a fixed vocabulary. This keeps
explanation aligned with verification: the same witnesses that justify conse-
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quences are those that the evaluator checks. The asymptotic improvement
is thus a concrete instance of the broader methodological claim: by restrict-
ing the language and fixing semantics, explanatory artifacts become both
computable and efficiently auditable.

Corollary 5.5 (Blackboxness). In universal hypothesis spaces, the demand
for perfect semantic explanation runs into undecidability (modulo trivial
fixed-point degeneracies). In the NOTEBOOK’s restricted IR families, “black-
boxness” is reduced not by interpretive magic but by design: semantics are
pinned down, and explanations are certificates for a tractable fragment. The
relevant notion of transparency is therefore conditional: it is as strong as the
restriction is tight, and it degrades as one approaches to 3V-shaped demands.

Definition 5.6 (Uniform Operator). Fix a SEMANTICS LOCK £ and a BLUM
COMPLEXITY measure C for the chosen machine model. Assume a total

effective transformer
S:N—>N (5.64)

on program indices such that, for every index e,

(i) Extensional preservation: ps(.)y = . as partial functions on the locked
encodings;

(ii) Terminal certificate: either S(e) returns an index provably C-optimal
among all indices computing ., or else S returns a mechanically
checkable certificate that no extensionally equivalent index is C-optimal.

Theorem 5.7 (Diminishing Returns from Necessity). Fix a universal hy-
pothesis space (capable of encoding arbitrary effective evaluators under
standard encodings) and fix a BLUM COMPLEXITY measure C. There is no
total computable completion operator S which, given an index e, halts and
returns either

(i) an index e* such that .« = . and e* is C-optimal among all indices
computing ., or

(i) a certificate that ¢, admits no C-optimal implementation.

Consequently, any effective optimization pipeline can only produce improve-
ments as a stream of local, witness-producing gains (candidate rewrites,
counterexamples, refutations, or finite-gate certificates); it cannot uniformly
and conclusively “finish” optimization in the strong, global sense.

Proof Sketch. By reductio ad absurdum. Assume for contradiction that
such a total S exists. Define the extensional semantic predicate on partial
computable functions

OPT(f) <= “there exists a C-optimal index computing f.” (5.65)

This predicate depends only on the denotation f, not on any particular
syntactic presentation.

By Lemma 2.3, for any BLUM COMPLEXITY measure C there exist total
computable functions f such that =OPT(f). On the other hand, OPT(f)
holds for some f (e.g. sufficiently trivial total functions admit minimal
evaluators under standard machine models), so OPT is nontrivial.
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If S existed, we could decide OPT(p.) uniformly in e by running S(e)
and observing whether it returns an optimal index or a certificate of nonex-
istence. Thus OPT would be decidable as a nontrivial extensional property,
contradicting classical limitative results, in particular, Rice’s theorem; cf.
Rice [1953], and the surrounding foundations Godel [1931]; Church [1936];
Blum [1967]; Chaitin [1974], therefore no such S exists. [ |

Corollary 5.8 (Arithmetic Polarity of Optimization). In the universal
regime, improvements are Y-shaped:

There exists an extensionally equivalent implementation with
strictly better measured behavior.

is witnessed by a concrete alternative program together with a checkable
gate (typically finite). By contrast, completion and optimality are II-shaped:

For all extensionally equivalent implementations, none is
better (eventually).

is a global universal claim. The absence of a total semantic oracle forces
optimization to proceed by bounded search plus certificates on restricted
gates; hence marginal gains are pushed into increasingly instance-dependent
search as low-cost witnesses are exhausted.

Observation. On a fixed finite witness table under a semantics lock, comple-
tion is decidable: “no remaining violations” is a finite universal fact and can
be certified exactly (as in the margin-and-cache certificate). DIMINISHING
RETURNS here is therefore not folklore but precise: it reflects a structural
distinction between finite, auditable gates (where saturation can be proved
by exhaustive checking) and universal regimes (where uniform saturation
would amount to a completion oracle for nontrivial extensional properties).
At the level of generality where learned artifacts range over a hypothesis class,
uniform interpretability and uniform optimization demands must become
questions about program semantics.
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